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Abstract

The U.S. Department of Energy, Federal Energy Technology Center, has sponsored  a project to1

simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular,
discontinuous, or clustered networks of fractures.  New FORTRAN codes have been developed
to generate fracture networks, to simulate reservoir drainage/recharge, and to plot the fracture
networks and reservoir pressures.  Ancillary codes assist with raw data analysis.

FRACGEN, the fracture network generator, implements four Boolean models of increasing
complexity through a Monte Carlo process that samples fitted statistical distributions for various
network attributes of each fracture set.  Three models account for hierarchial relations among
fracture sets, and two generate fracture swarming.  Termination/intersection frequencies may be
controlled implicitly or explicitly.

Using an output file consisting of fracture end-point coordinates and apertures, NFFLOW, the
flow simulator, then computes the transient flow rates or bottom-hole pressures according to
user-specified pressure or rate schedules, respectively.  The flow simulator divides each matrix
block into subregions that drain to the midpoint of the adjacent fracture segments in accordance
with a one-dimensional, unsteady-flow model.  Each idealization approximates both the volume
and the mean flow path of each subregion.  There is no flow from matrix block to matrix block. 
Volumetric flow rate in the fractures is modeled as a linear (cubic law) function of the pressure
difference between the recharge points and the fracture intersections.  The linear function
incorporates a "real gas pseudopotential," which allows viscosity and the z-factor to vary with
pressure.  A requirement of material balance among all intersections couples the individual
recharge models together.  The resulting equations for material balance at fracture intersections
are solved by a Newton-Raphson technique that accommodates a slight nonlinearity caused by
matrix recharge.  A network consisting of 2300 fractures and 51 time steps was simulated in less
than 1 hour (clock time) on a Pentium 200 equivalent computer.

Your video driver may cause some mathematical characters to display incorrectly on your screen. They should display correctly if you zoom in; they will also print correctly.
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Introduction

Beginning in the late 1970s, investigators of fractured aquifers began to statistically describe
fracture networks for purposes of flow simulation.  Initial attempts were simple.  Networks were
generated in a Boolean process in which fractures were randomly located and fracture length,
aperture, and orientation were assigned as either fixed variables or as members of simple statis-
tical distributions (i.e., uniform distributions, Gaussian distributions, or lognormal distributions)
(see, e.g., Baecher et al., 1977).  Flow simulation of these discrete irregular networks began
during the early 1980s and was limited to small numbers of fractures that carried flow under
steady-state conditions without matrix participation (e.g., Long et al., 1982).

Throughout the 1980s, development of irregular fracture network generators and flow simulators
accelerated.  This decade saw the advent of three-dimensional modeling, spatial correlation, flow
simulation via several techniques, and contaminant transport modeling (see generally Bear, Tsang
and de Marsily, 1993).  Most of the computer programs, however, implemented aquifer models
designed for investigation of either proposed radioactive waste repository sites or geothermal
hard-rock reservoirs (e.g., "FRACMAN/MAFIC" by Golder Associates, Seattle, USA;
"NAPSAC" by AEA Decommissioning & Radwaste, Harwell, United Kingdom; "FMG" and an 
equivalent discontinuum model by Lawrence Berkeley Laboratories, Berkeley, USA;
"FRACNET" by Robinson, 1989).  These models do not serve the needs of the petroleum 
industry because they do not model strata-bound fracture networks, matrix storage of hydro-
carbons, or hydrocarbon flow.  Other models that might serve the needs of the petroleum industry
were either conceptual or were prototypes that were not sufficiently developed for practical
widespread use.  More useful programs for modeling petroleum  reservoirs have appeared during
the 1990s (e.g., new versions of FRACMAN by Golder Associates; hierarchial modeling of frac-
ture networks in stratified rock by Gervais et al., 1992).

Is modeling flow in discrete irregular fracture networks worth the perceived extra costs (of time,
data, and computer resources) in comparison to the various continuum and porous media
approaches?  The answer is yes, for the following reason.  Networks and fractures themselves
usually present large permeability anisotropies and heterogeneities across a range of scales.  Thus,
the scale of observation and spatial variability become critical issues in every investigation, and
simple averaging, as required by conventional models, tends to loose utility.

To demonstrate the need for cluster modeling of discrete fractures, the real or predicted prop-
erties of fracture networks have been abstracted frequently in recent years for use in models of
anisotropic heterogeneous porous media where fractures or fracture swarms are represented as
zones of greater intergranular permeability.  Proper abstraction requires additional work that
could be avoided if the fracture data are merely summarized and input directly.

As if large-scale flow-path geometry and statistical abstraction failed to provide enough com-
plexity, analysts and reservoir producers must contend with stress sensitivity and plugging of
fractures by fluids from drilling or stimulation.  These two issues require near-bore simulation
studies that account for smaller-scale near-bore variations in irregular networks -- things not
readily accounted for by conventional models.
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The fracture network models presented here represent fracture networks in two-dimensional
space and in patterns that are either random or clustered but without larger-scale spatial corre-
lation.  All fractures are assumed to extend perpendicular to the reservoir layer from top to
bottom of the layer.  Where fracture patterns vary significantly in the third dimension (perpen-
dicular to the bedding plane) or where the fracture locations are either regular or uniform, three-
dimensional models or conventional models might be more appropriate.  Likewise, where the
model must account for larger-scale spatial correlation of fractures around major structural
features, such as large folds or faults, other models might be more appropriate.  Our fracture
network models best represent regional fractures (including swarms) and simple clusters of
tectonic fractures.

To account for dynamic matrix drainage to (or recharge from) the fracture network, a new flow
simulator was produced.  The most salient features of this simulator are as follows.  It computes
transient flow rates or bottom hole pressures according to user specified pressure or rate sched-
ules.  It handles wells that are horizontal (including multilaterals), inclined, or vertical and that are
either hydrofractured or intersected by natural fractures.  Flow is single phase, and gravity effects
are neglected.  Only one reservoir layer is modeled, and no flow occurs across the upper and
lower boundaries of the reservoir layer.  There are no assumptions about the configuration of the
fracture network other than that it is represented two-dimensionally by a file that lists end point
coordinates and an aperture for each fracture on a separate line of input data.

Fracture-bound matrix blocks are subdivided into subregions that drain to (or recharge from) the
midpoint of adjacent fractures in accordance with a one-dimensional unsteady-flow model.  There
is no flow from matrix block to matrix block.  Volumetric flow rate within the fractures is
modeled as a linear (cubic law) function of the pressure difference between the recharge points
and the fracture intersections.  A requirement of material balance between all the intersections
couples the individual recharge models together.  The resulting equations for mass balance at
intersections are solved by a Newton-Raphson technique that accommodates the slight non-
linearity caused by the matrix participation.  All flow towards the well occurs through the
fractures, except for drainage from matrix blocks directly contacting the well bore.

Fracture Network Generation

Objectives:  2-D Strata-Bound Networks with Fracture Swarming

This project began with the goal of modeling Devonian shale reservoirs of the Big Sandy field,
such as the reservoir tapped by the U.S. Department of Energy's RET #1 well in Wayne County,
West Virginia.  At this site, the available data on fracture spacing and relative fracture location
came from short core segments and from a borehole video of the RET #1 well's horizontal bore. 
Thus, the first objective was to generate a useful model of the fracture network from an
essentially one-dimensional sample of the reservoir.

Neither the lengths nor the intersection/termination frequencies of fractures could be observed,
either in the reservoir or in nearby analog outcrops.  Fractures intersecting the well were obvi-
ously clustered.  Maximum influx of gas occurred within these clusters, so modeling clusters of
fractures became the second objective.  However, like fractures, neither the lengths nor the
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intersection/termination frequencies of clusters could be observed.  Furthermore, suitable simple
schemes to model clusters of fractures in strata-bound rocks were not found in the literature. 
Therefore, we focused on making two-dimensional models of strata-bound fractures that were
located either randomly or in swarms.

To estimate fracture lengths, the initial plan was to start modeling with short fractures and
gradually increase the fracture length with each new series of fracture networks that would be
generated, until flow simulation results began to match the well production or well test results. 
Fracture center-point density would be decreased while fracture length would be increased so that
fracture density would remain constant.  Cluster lengths might be estimated in a similar manner
with longer-term production data.  Intersection/termination frequencies would be ignored because
these attributes could not be determined with data from wells.  This initial plan was not imple-
mented because the flow simulator was not yet operational.

Later, a more successful reservoir modeling effort began with an attempt to simulate a well test at
the U.S. Department of Energy's Multi-Well Experiment (MWX) site near Rifle, Colorado.  Infor-
mation on fracture lengths and intersection/termination frequencies was available for some sets
from Lorenz et al. (1989, 1991) and from their analog outcrop fracture map (Figure 3A of Lorenz
and Finley, 1991).  It became apparent that this analog outcrop could provide essential bits of
information for the generation of synthetic fracture networks that match the real networks in
nearby deeply buried reservoirs.

It also became apparent that, even where analog outcrops are unavailable and where reservoir
fracture lengths cannot be readily estimated from traditional correlations with bed thickness,
geological interpretation of fracture sets and well test data could suggest certain characteristic
intersection/termination frequencies that would require determinable fracture lengths. 
Intersection/termination frequencies not only are useful for estimating fracture length distributions
in reservoirs; they also are essential to properly model flow and network appearance.  Our early
flow simulation work demonstrated that it was insufficient to merely know the fracture length
distributions in reservoirs and to plot fractures with those lengths in a Poisson or mixed Poisson
process.  It is imperative also to control intersection/termination frequencies, because a network's
connectivity affects flow rates through time.  Therefore, modeling connectivity became the third
objective of the fracture network modeling effort.

Many tight gas reservoirs exist in relatively thin strata, where many of the largest and most con-
ductive fractures extend from top to bottom in individual beds, but do not extend into adjacent
beds because of contrast in rheological properties.  Therefore, two-dimensional representations of
strata-bound fracture networks may adequately represent many reservoirs.  Where many fractures
extend into adjacent beds and where a large flux of gas occurs across bed boundaries, three-
dimensional models are needed.

Approach: Statistical Models

The currently popular techniques of geostatistics (e.g., Kriging and sequential indicator simula-
tion) depend on the application of a certain support area, usually a square or rectangle.  Unless an
extremely fine-grid representation is used, these techniques fail to accommodate the irregular
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shapes of relatively small but potentially important geologic phenomena such as fractures and
clusters.  These techniques also fail to accommodate scale-dependent attributes such as fracture
permeability, which cannot be represented easily with areal or volumetric averages.  Boolean
techniques, on the other hand, readily permit modeling of objects across a range of scales when
the various attributes of the objects can be described with distributions or probabilities.  A critical
drawback of Boolean techniques is their failure to account for spatial correlation between objects. 
However, conditional simulation and synthetic annealing may be used with Boolean models to
match observed fracture/cluster locations and to develop spatial correlation.

As in numerous previous studies by various investigators, we apply a stochastic Boolean approach
to modeling fracture networks.  In our simplest models, fractures are generated by randomly
selecting fracture center-points and then assigning a length, aperture, and orientation to each
center-point to define each fracture.  Fracture attributes are defined by fixed variables and
statistical distributions, as shown in Tables 1 and 2.  Our simplest models are similar to those
presented by the earliest investigators.  In our more complex models, shown in Tables 3 and 4,
fractures may be placed within swarm-like clusters.  In all four models, fractures may be moved to
locations where the specified termination frequencies are achieved.  Thus, local spatial correlation
arises from these processes for control of clustering and connectivity.  The discussion below
introduces the most important distributions chosen to generate two-dimensional representations
of fracture network geometry from a one-dimensional sample of fractures.

Table 1.  Fracture Network Model for Level 1

Network Attribute Distributions1

number of sets 0

fracture orientations random

fracture locations random2

fracture lengths continuous uniform (l ,l )3
min max

discrete uniform (l ,l )min max

continuous nonuniform (l ,l )min max

fracture apertures fixed variable (W)

fracture densities fixed variable (D)

fracture termination implicit (via end-point shifting) (%)
explicit (via “synthetic annealing”) (%)

 Variables explained in Table 5.1

 Parent-daughter clustering can be induced by the “synthetic annealing” routine and “end-point shifting.”2

 Length distributions will be modified by termination control processes.3
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Table 2.  Fracture Network Model for Level 2

Network Attribute Distributions1

number of sets i = 1 to 10

fracture orientations Gaussian (2 ,s )i 2i

fracture locations random2

fracture lengths continuous uniform (l ,l )3
i,min i,max

discrete uniform (l ,l )i,min i,max

continuous nonuniform (l ,l )i,min i,max

intersection freq. controlled (l ,l )i i,max

fracture apertures fixed variable (W )i

fracture densities fixed variable (D )i

fracture termination frequencies implicit (via end-point shifting) (%)
explicit (via "synthetic annealing") (%)

fracture intersection frequencies explicit (via “synthetic annealing”) (%)

 Variables explained in Table 5.1

 Parent-daughter clustering can be induced by the "synthetic annealing" routine and "end-point shifting."2

 Length distributions will be modified by termination and intersection control processes.3

Table 3.  Fracture Network Model for Level 3

Network Attribute Distributions1

number of sets i = 1 to 10

fracture orientations Gaussian (2 ,s )i 2i

cluster orientations Gaussian (2 ,s )ci 2ci

cluster locations random2

fracture locations parallel to cluster axis - random2

normal to cluster axis - exponential (m )i

fracture lengths continuous uniform (l ,l )3
i,min i,max

continuous nonuniform (l ,l )i,min i,max

discrete uniform (l ,l )i,min i,max

intersection freq. controlled (l ,l )i i,max

cluster lengths continuous uniform (l ,l )3
ci,min ci,max

fracture apertures fixed variable (W )i
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Table 3.  Fracture Network Model for Level 3 (Continued)

fracture densities fixed variable intracluster density (D )zi

cluster densities fixed variable (D )ci

fracture termination frequencies implicit (via end-point shifting) (%)
explicit (via "synthetic annealing") (%)

fracture intersection frequencies explicit (via “synthetic annealing”) (%)

cluster termination frequencies implicit (via end-point shifting) (%)

 Variables are explained in Table 5.1

 Parent-daughter clustering can be induced by the "synthetic annealing" routine and "end-point shifting."2

 Length distributions will be modified by termination and intersection control processes.3

Table 4.  Fracture Network Model for Level 4

Network Attribute Distributions1

number of sets i = 1 to 10

fracture orientations Gaussian (2 ,s )i 2i

cluster orientations Gaussian (2 ,s )ci 2ci

cluster locations random2

fracture locations parallel to cluster axis - random2

normal to cluster axis - exponential (m )i

fracture lengths lognormal (l ,s )3
i li

continuous uniform (l ,l )i,min i,max

discrete uniform (l ,l )i,min i,max

intersection frequency controlled (l ,s )i li

cluster lengths lognormal (l ,s )3
ci lci

fracture apertures lognormal (w ,s )i wi

fracture densities lognormal intracluster densities (d ,s )i di

cluster densities fixed variable (D )ci

fracture termination frequencies implicit (via end-point shifting) (%)
explicit (via "synthetic annealing") (%)

fracture intersection frequencies explicit (via “synthetic annealing”) (%)

cluster termination frequencies implicit (via end-point shifting) (%)

 Variables explained in Table 5.1

 Parent-daughter clustering can be induced by the "synthetic annealing" routine and "end-point shifting."2

 Length distributions will be modified by termination and intersection control processes.3
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Table 5.  Variables Incorporated in the Stochastic Fracture Models.

Subscripts
i a particular fracture set.
k a particular cluster.
j a particular fracture.
c clusters or fracture zones, generally.
z intra-cluster fracture center-point density.
2 orientation.
max maximum value.
min minimum value.

Note: all other subscripts and subscripted symbols will be explained in the text where
used.

Fixed Variables
L effective dimension of fracture zones or fractures (ft).
W effective hydraulic aperture (width) of fractures (ft).
D number of fracture or fracture zone center-points per unit representative area (pts/ft ).2

Statistics
2 orientation (degrees).
d effective intra-cluster fracture center-point density (pts/ft ).2

l effective length of fractures or fracture zones (ft).
m distance between fractures and axis of fracture zone (ft).
w effective aperture (width) of fractures (ft).
s standard deviation about the mean for any parameter (as denoted by subscript).

We begin to derive our fracture network models by assuming that an investigator can treat frac-
tures as straight line segments (or rectangles in three-dimensional space) that are defined by a
center point, a length, and an azimuth (all fractures are perpendicular to bedding).  We can
analyze separately the spatial arrangement of center points, orientations, and length dimensions. 
We assume that fractures, when clustered, occur in "swarms."  In nature, swarms tend to be long,
sometimes sinuous, perhaps strata-bound zones with maximum fracture density near their centers. 
So, we can treat clusters as linear zones that are defined by a center point, a length, a width, and
an orientation.  Again, we can analyze separately the spatial arrangement of center points,
orientations, and length-width dimensions for clusters.  Intracluster fracture center-point density
can be determined after cluster dimensions are defined.  Fracture apertures are assigned after the
lines (representing fractures) are generated.  Each attribute must be analyzed and modeled with
respect to an assumed theoretical distribution, unless frequency distributions are input directly.

Except by design, field work rarely yields enough information to study the spatial arrangement of
fracture and cluster center-points.  More often, investigators determine the number and location
of fractures or clusters encountered along a straight sample line (e.g., a well bore, mine shaft, or
road cut).  Investigators typically calculate the average distance between fractures and report this
value as the fracture spacing.  However, fracture spacing more appropriately refers to a distri-
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bution of distances between fractures, measured perpendicular to the mean orientation of the
fracture planes belonging to one set, if sets exist.  The distribution of fracture spacing is then
analyzed, assuming various models, to estimate the density and the two-dimensional or three-
dimensional spatial arrangement of fractures.

Figure 1 illustrates the fundamental two-dimensional patterns of points in space.  These patterns
and the associated probability distributions are described in statistics textbooks. On the bottom
and right sides of each two-dimensional illustration, Figure 1 shows the equivalent one-
dimensional pattern of point locations.  Think of the one-dimensional patterns as the patterns that
would arise if the points in the two-dimensional illustrations were converted into lines (fractures)
oriented perpendicular to the one-dimensional illustrations (which would represent sample lines). 
Figure 2 presents relative frequency histograms for the fundamental distributions of spacing, as
observed along a sample line.  These distributions of spacing arise from the fundamental patterns
of point location.

When a reservoir exhibits fixed values of spacing (Figure 2a) or triangular distributions of spacing
(Figure 2b) for each set, as observed in core or borehole imagery, the investigator should apply a
conventional dual-permeability simulator.  Thus, fixed values of spacing (indicating regular frac-
ture patterns) and triangular distributions of spacing (indicating uniform fracture patterns) will not
be considered further.  Our objective is to model fractures that are randomly located or clustered
into swarms.  Fracture swarms have been observed frequently in basins around the world (see
Laubach, 1992, for examples from the Piceance Basin, Green River Basin, and San Juan Basin).

The pattern of points on a map is "random" (Figure 1c) if each quadrat has the same probability of
containing a center point as all other quadrats of equal size and if all points are placed without
regard to the placement of other points.  The distribution of spacing between random points along
a sample line is exponential (Figure 2c), with more short spacings than long spacings.  Ostensibly,
sedimentary rock can develop a truly random spacing of fractures only where the stress field is
truly homogeneous and where randomly located, small-scale heterogeneities exist in the rock.  In
nature, things tend to be related, and fractures develop more closely together in some areas
because of stress variations around primary or structural features in the rock or because of local
stress variations originating in the underlying rock.  In other areas, fractures are more uniformly
spaced because each fracture relieved the ambient stress as it formed.  Consequently, truly ran-
dom fracture locations in rock are probably rare.  Locations that appear random probably result
from a combination of a uniform distribution and a clustered distribution.

The probability distribution applied to randomly located points in space is a Poisson distribution. 
The Poisson distribution is a discrete distribution consisting of events or objects that may be
counted in defined areas of space.  For example, if a reservoir is divided into q equal-sized
quadrats, each of area a, such that the number of quadrats is approximately equal to the total
number of fracture center-points, n, the Poisson probability function will tell us the probability
that a quadrat will contain exactly x fracture centers:
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Figure 1.  Fundamental spatial patterns of points (1-D & 2-D).

where 0.5 < n/q < 5, and where P represents both the mean number of fracture centers per
quadrat (i.e., n/q) and the variance about this mean.

A sample mean may be calculated with

and the sample variance with

where x  is the number of events or objects (i.e., fracture centers) in the ith quadrat.i
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Figure 2.  Fundamental distributions of spacing that arise from the fundamental spatial
  patterns of points.

The sample's variance in the number of fractures per quadrat, s , should approximately equal the2

mean if the pattern of fractures is truly random.  If the sample's variance is much larger than the
mean, the pattern is more clustered than random; if much less than the mean, the pattern is more
uniform than random.

Randomly located points may appear clustered, but they are not.  The pattern of points on a map
is "clustered" (Figure 1d) if equal-size quadrats have different probabilities of containing a center
point and if any points are placed in relation to the placement of other points.  From an intuitive
standpoint, the theoretical distribution for the spacing of clustered events along a sample line
appears to be some variety of exponential distribution (perhaps a Weibull distribution), which
accounts for the degree of clustering.  As the points become more tightly clustered, the distribu-
tion of spacing changes from a classical exponential distribution (arising from randomly located
objects) to some exaggerated form of an exponential distribution (Figure 2d).

Clustered point patterns are generally modeled as combinations of two or more distributions.  A
popular model is the negative binomial distribution, which is a combination of a Poisson distribu-
tion and a logarithmic distribution.  In this combination, the clusters or zones are randomly
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located in space, the numbers of fractures within clusters are distributed logarithmically, and the
degree of clustering is accounted for by a clustering parameter.  However, the negative binomial
distribution does not specifically account for anisotropic or elongated clusters.

The cluster models presented here parallel the negative binomial model but also account for the
elongation and anisotropy of fracture swarms.  We have not derived a mathematical probability
function for our model, so we can only describe the combinations of distributions.  First, the
centers of fracture zones are chosen in a Poisson process (overlap of clusters is not prevented). 
The distance between each fracture center-point and the axis of the zone is selected from an
exponential distribution, which has a mean value that acts as a clustering parameter and which
determines cluster width.  The density of fracture center-points within clusters is either constant
or lognormal, and cluster lengths are either random (within limits) or lognormal, respectively.  So,
the numbers of fractures per cluster are distributed either randomly or logarithmically.

It is possible to model clustered fractures in bedrock as either a regular or a uniform pattern of
fractures with a lognormal distribution of spatially correlated apertures, and these models might fit
some reservoirs nicely.  However, we chose to apply randomly located fractures in the simpler
models and randomly located clusters in the more complicated models.  Modeling fractures as
randomly located clusters is consistent with the expected pattern of fractures in the typical basin
where the sedimentary rock sequence is extremely heterogeneous and where paleo-stress fields
varied on a local scale but where major compressional folds did not develop.

It is also reasonable to use randomly located cluster patterns when the spatial correlation of
fracture zones cannot be determined from the available information (as frequently occurs). 
Clusters produced by this model should mimic simple fracture swarms produced by noncom-
pressional (drape) folding, minor faulting, and internal stress irregularities developed around
primary rock heterogeneities.  Our clusters may not accurately mimic the larger-scale spatial
pattern found around major compressional folds and large tectonic faults.  Nevertheless, our
cluster models do provide a first-order approximation of the fracture patterns of these structures,
and they are useful for modeling fractures within small areas on these structures.

The choice of theoretical distributions is an important issue, not only in modeling fracture loca-
tions, but also for modeling fracture and cluster orientations.  The most appropriate probability
model for a "clustered" distribution of fracture orientations in two-dimensional space is the Von
Mises distribution, also known as the "circular normal" distribution.  However, we can use a
Gaussian distribution instead of a Von Mises distribution because the Von Mises probability func-
tion becomes asymptotic to the Gaussian probability function as the range and the variance of the
distribution approaches zero.  As a rule, when a distribution is nearly symmetrical and the range is
less than 90 degrees, the Gaussian mean will differ from the mean angle by less than 1 degree; and
when the range is less than 60 degrees, the standard deviation will differ from the angular devia-
tion by less than 1 degree (Batschelet, 1965).  We anticipate no problems with the use of a
Gaussian approximation because fractures tend to occur in sets that nearly always have a range
less than 60 degrees.

As mentioned, our models also require statistical distributions for fracture length, fracture
aperture, cluster length, the location of fractures within clusters, and the density of fractures
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(4)

(5)

(6)

(7)

within clusters.  For our most complex model, we adopt the lognormal distribution for fracture
length, fracture aperture, cluster length, and the density of fractures within clusters.  Many con-
tinuous distributions in nature have the property that most of the observations drawn from the
population have a small magnitude while a few have a large magnitude (e.g., gold content of
stream sediment samples).  Such a distribution fits, at least on first impression, the measured
aperture of fractures, the measured lengths of fractures, and the measured lengths of fracture
zones.  Please note that such lognormal appearance, rather than a power-law appearance, may
result entirely from a scale-dependent sampling bias or censoring.  But given the common
occurrence of bias and censoring during sampling, the lognormal distribution often fits the
available data.  The lognormal probability density function is

where U and s  are the mean and variance, respectively, of the natural logarithms of the measure-u
2

ments of x.  The lognormal mean of x is given by

and the lognormal variance of x is given by

For the distance between fractures and their cluster axis, we adopt the exponential distribution. 
Exponential distributions describe situations where the probability of an event decreases over time
or space and the rate of change in the probability is directly proportional to the probability at that
instant or location.  Such distributions are analogous to the familiar laws of decay.  Within the
family of exponential distributions, there are single-parameter distributions, such as the one pre-
sented below, and there are dual-parameter distributions, such as the Weibull distribution and the
gamma distribution.  For simplicity, we apply the most commonly used, single-parameter density
function:

where P is both the exponential mean and the exponential standard deviation of the population. 
The user may estimate the population mean with a sample mean calculated as either an arithmetic
average or as the sixty-third percentile (63%) value of the sample observations, ranked from least
to greatest.  By adopting the one-parameter distribution, we have only one parameter to control
clustering (analogous to the negative binomial distribution).
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(8)

(9)

(10)

For the placement of fractures along the axes of clusters, we adopt a combination of a continuous
uniform (random) distribution and one of several fracture length distributions.  Three to four frac-
ture length distributions are available in each model.  The distributions are: continuous uniform,
discrete uniform, continuous nonuniform, lognormal, and intersection frequency controlled.

The continuous uniform probability density function is

and the probability distribution function is

where the mean of x is

The lower and upper limits of the distribution are a and b, respectively.

The lognormal distribution was presented above.  Probability density and distribution functions
will not be presented here for the other three length distributions because they are not central to
understanding the fracture network models and are not required for the derivation of any equa-
tions presented below.  Furthermore, they serve little useful purpose in the analysis of the input
data (e.g., goodness-of-fit tests).

Both the discrete uniform distribution and the continuous nonuniform distribution are symmetric,
so fracture center-point density distributions within a cluster can be handled the same way as for
the continuous uniform distribution.  Both distributions are characterized by lower and upper
limits of the distribution, a and b, and both can have a mean value estimated with Eq. 10.  In
nature, fractures never have uniform distributions of length, and our use of a uniform distribution
is a gross (but often helpful) simplification.  Fracture lengths are the products of local stress fields,
interacting fracture growth (stress field interference), and initiation stress requirements, especially
for fractures attempting to propagate across pre-existing fractures.  Late-forming fractures tend to
have lengths related to the spacing of early-formed fractures and to their capacity to propagate
across early-formed fractures.  For these reasons, an intersection frequency-controlled distribution
(at a given scale of observation) will tend to have a nonsymmetric, lognormal shape; so we adopt
the lognormal probability distribution as a proxy and a lognormal mean as a measure of central
tendency for this distribution.

Given that the number of unbiased measurements needed to calculate the required statistics are
difficult to obtain, for lower-level models we adopt fixed variables to describe fracture aperture
and intracluster fracture center-point density.
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The approach to modeling connectivity in a fracture network is, perhaps, less amenable to the
Boolean technique.  Theoretical discrete distributions appropriate for modeling T-termination
frequencies and intersection frequencies have not been found.  Therefore, these observed fre-
quency distributions are input directly for explicit modeling.  If the connectivity attributes of a
network are modeled, hierarchial relationships among fracture sets can be created by generating
each set independently and in chronological order.

Overview of Fracture Network Modeling

The preceding section introduced the theoretical distributions upon which the models (Levels 1
through 4) are based.  The method of fracture pattern generation is summarized below only for
the Level 2 and Level 4 models.  Connectivity control methods are described after describing the
basic generation process.

Level 2

The Level 2 model generates randomly located fractures as sets.  Each fracture set is defined by
its orientation distribution, fracture length distribution, effective fracture aperture (W ), andi

density of center points (D ).i

A standard procedure is used to generate Gaussian distributions, such as orientation. A random
number between zero and one is generated and treated as a cumulative probability.  FRACGEN
applies a fitted fifth-degree standard rational equation to estimate standard normal deviates as a
function of cumulative probability.  Standard normal deviates less than -3.0 or greater than +3.0
are reassigned values of -3.0 or +3.0, respectively.  Each standard normal deviate is converted to
an observation by

where x  is the jth observation (i.e., orientation) in the ith set; P  is the mean of the ith set (e.g.,i,j i

2 ); z  is the jth standard normal deviate in the ith set (determined from the jth random numberi i,j

generated); and s  is the standard deviation of the ith set (e.g., s ).i 2i

Fracture patterns for the Level 2 model are generated by randomly selecting an x-coordinate and a
y-coordinate for the center point of each fracture.  Fractures are generated until the number of
center points in the generation region provides the given density, D .  To make fractures, eachi

center point is assigned a fracture length from a user-selected distribution.  There are four length
distribution options.  The default is a continuous uniform distribution, in which each fracture is
randomly assigned a length between the specified limits.

Alternatively, the user may choose a discrete uniform distribution, in which fractures are plotted
by rank, starting with the longest fractures.  This creates a mesh of long fractures upon which the
shorter fractures in the same set can terminate.  The user may also choose a continuous nonuni-
form distribution, in which the range of lengths varies about the mean.  This option is intended for
use with the fracture termination control process to help control the frequency of unconnected
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(12)

(13)

(14)

short fractures without changing the mean fracture length.  The user may also choose an inter-
section frequency-controlled fracture length distribution, defined by a lognormal mean length
(input as l ) and a maximum length (l ).i,min i,max

After assigning a length, each fracture is oriented based on a Gaussian mean and standard
deviation.  Each fracture is then assigned the average effective aperture, W .  After fractures arei

generated for the first fracture set, they are generated for the second, third, ..., and ith fracture
set.

The user must supply the input data file with the parameters shown in Table 2 plus the dimensions
of the flow region.  The flow region has been enclosed within a fracture generation region, which
is defined to extend a distance equal to the maximum fracture length (of the ith set) beyond the
boundaries of the flow region.  For a set with an extremely low center-point density, the genera-
tion region expands to accommodate at least five fractures.

Level 4

The Level 4 model generates sets of clustered fractures, like the Level 3 model, and introduces
lognormal distributions for several attributes to better represent the inherent network hetero-
geneity of real fracture networks.  All fractures are plotted as members of clusters that have a
lognormal distribution of intracluster fracture center-point densities defined by d  and s .i di

The lognormal distributions are generated in a procedure analogous to the procedure for gen-
erating a Gaussian distribution.  First, a standard normal deviate is generated.  Standard normal
deviates less than -3.0 or greater than +3.0 are reassigned values of -3.0 or +3.0, respectively. 
Then, the standard normal deviate is converted into a lognormally distributed observation by

where U and s  are, respectively, the mean and the standard deviation of the natural logarithms ofu

the sample of x for the ith set; P  is the lognormal mean of x (Eq. 5); s  is the lognormal standardi x

deviation of x (see Eq. 6); x  is the jth observation (e.g., length of a fracture) in the ith set pro-i,j

duced in the model; and z  is the jth standard normal deviate (determined from the jth randomi,j

number generated).

Fracture patterns for the Level 4 model are generated by randomly selecting an x-coordinate and a
y-coordinate within the generation region for each cluster's center-point.  Clusters are generated
until the number of cluster center-points within the generation region provides the given cluster
density, D , for the ith cluster set.  To make clusters, each center point is assigned an axialci

orientation based on the mean orientation and standard deviation for the ith fracture set, unless
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     For non-skewed fracture length distributions, the number of fractures per clusters is2

(15)

(16)

(17)

(18)

(19)

(20)

statistics for the orientation of clusters are specifically supplied.  Each cluster's length (l ) isci,k

selected from a lognormal distribution, and cluster end-points are calculated.  If desired, cluster
end-points are shifted, within user-specified limits (as a percent of cluster length), to points of
intersection with pre-existing clusters.  Each cluster's width (L ) and number of fractures (N ) arewi i,k

defined as follows .2

For 

and for 

where

where

where for 6 ,1

and for 6 ,2
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(22)

(23)

(24)

(25)

(26)

where

      B = arbitrarily selected number of intervals.

Critical fracture length parameters are calculated as

and

where

and

Cluster width as defined above will contain 99.8 percent of the fractures generated.  The
parameter l  is the fracture length two standard deviations above the mean; l  is the lengthi,2.0 i,3.0

three standard deviations above the mean.  Please note that l  has been substituted for l  toi,2.0 i,3.0

reduce the amount of time-consuming numerical integration by FRACGEN.  Consequently, the
equations presented above slightly overestimate the theoretically correct number of fractures for
each cluster.  Figure 3 illustrates intracluster fracture center-point density and its relationship to
fracture length.  The 6 function, shown in Eq. 18, estimates the fraction (or weight) that upon
multiplication with d  gives the weighted average center-point density in the regions of reducedi,k

density at each end of a cluster (see Figure 3b).

Each cluster's length and width serve to define a local coordinate system -- coordinates u and v,
respectively.  Each fracture's center point is positioned randomly along the axis of the cluster
(coordinate u):
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Figure 3.  Relationship between distribution of fracture length (part A) and average fracture
center point density for long clusters (part B) and short clusters (part C).  The
exponential distribution of fracture center point density across the clusters (parallel
to Lw) is not shown.  Center point density is at a maximum, D , in the middle of thezi

cluster box.
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And each center point is positioned away from the axis (coordinate v), on one side or the other
(depending on whether R  is greater than or less than 0.5) using the following equation for anj2

exponential distribution:

where m  is the exponential mean distance between fractures and their cluster axes.  Parametersi

R , R , and R  are random numbers between zero (exclusive) and one.j1 j2 j3

The first two fractures plotted in each cluster have a slightly different plotting strategy, however. 
The first is plotted abutting the right or upper terminus of the cluster, and the second is plotted
abutting the left or lower terminus of the cluster.  Cluster geometry and fracture-plotting strategy
are illustrated in Figure 4.  By plotting fractures this way, the program explicitly honors the
specified length distribution for clusters.  A small percentage of fractures will plot outside the
cluster box defined by L  and L , but none will extend beyond the cluster ends unless connectivityc w

control processes are activated.

To make fractures, each fracture center point is assigned an orientation, based either on the mean
orientation and the standard deviation for the ith fracture set, or on the kth cluster's orientation
and the standard deviation for the ith fracture set (if specified by setting 2  = 360.0 and assigningi

cluster-orientation statistics).  Then, each center point is assigned a fracture length according to a
user-specified distribution.  Fracture length distributions are the same as for the Level 2 model,
except that the default distribution has been replaced by a lognormal distribution, and the inter-
section frequency-controlled distribution is now defined by a lognormal mean (l ) and a lognormali

standard deviation (s ).  When a cluster's length is shorter than the maximum fracture length, allli

generated fracture lengths longer than the cluster are stored.  Stored lengths are used to create the
next cluster that is long enough to accommodate them.  Each fracture is assigned an effective
aperture from a lognormal distribution.  After clusters are generated for the first fracture set,
clusters are then generated for the second, third, ..., and ith fracture set.

The user of Level 4 must supply the input data file with all the variables and statistics listed in
Table 4 plus the dimensions of the flow region.  The generation region changes for each set and
extends beyond the specified flow region by a distance equal to l  + 1/2 times the diagonali,3.0

dimension of the largest cluster in the ith set.  For sets with an extremely low cluster density, the
generation region expands to accommodate at least five clusters.

Connectivity Control Methods

Our approach to modeling connectivity aims to match observed T-termination frequencies, inter-
section frequencies (including T-terminations) and an intersection density parameter called "con-
nectivity."  "Termination" refers to the tips of fracture traces as observed on a bedding-parallel
plane passing through the reservoir, and T-terminations occur where the tips appear as junctions
with pre-existing fractures, regardless of the angle of intersection.  Fracture traces display zero, 
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Figure 4.  Scheme for plotting fractures in clusters.  First and second fractures are plotted
     abutting the ends of the cluster box (part a).  This assures correct cluster
      length.  Fractures 3 to n are plotted randomly along the axis of the cluster
     (part b).  Part c shows a typical cluster without connectivity control applied.
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FRACGEN uses a simplified synthetic annealing process.  Simmulated annealing refers to a conditional3

simulation process first used to model crystallization of molten metal.  The process consists of performing a specified
number of changes to independent variables (i.e., swapping fracture location or orientation) until an objective function is
improved (i.e., until frequencies of T-terminations are improved).  Simplification is achieved here by accepting the first
set of independent variables that improves the objective function.

one, or two T-terminations.  "Intersection" refers to any junction (fracture tips not necessarily
involved) between two fracture traces, as observed on a bedding-parallel plane passing through
the reservoir. "Connectivity" refers to the average number of intersections per unit fracture length
(per set) and can be calculated by dividing the intersection density (the average number of inter-
sections per unit area) by the fracture density (D , average trace length of fractures per unit area).fi

Three processes exist to control fracture intersection or termination frequencies:

(1) fracture end-point shifting, up to a specified percentage of fracture length; 

(2) fracture end-point shifting, coupled with synthetic annealing conditioned to specified
T-termination frequencies; and

(3) optimal fracture end-point selection, coupled with synthetic annealing conditioned to
specified intersection frequencies.

The simplest process involves merely shifting each fracture end-point in either direction (toward
or away from the fracture center point) to the first point of intersection found either with pre-
existing fractures, or with subsequently generated fractures, or both.  Shifting of the end-points to
subsequently generated fractures can be limited to fractures within the same set or to fractures in
subsequently generated sets.  This provides a way of modeling renewed fracture growth.  The
maximum allowable distance for shifting is specified by the user as a percentage of fracture length. 
This makes intersection and termination frequency control implicit in the selection of the percent-
age of fracture length for which shifting is allowed (Figures 5 and 6).  The maximum allowable
percent shifting is usually chosen as the value that produces a target "connectivity."  Fracture end-
point shifting is relatively fast (because the search stops when the first intersection is found for
each end), but it is inadequate to achieve the desired level of control for some projects (see, e.g.,
Figure 7).  It can leave too many fractures unconnected to the network because, for short
fractures, the percent of fracture length over which shifting can occur is small.  For Levels 3 and
4, fracture end-points can be shifted beyond cluster ends.

A better technique for fracture termination control involves fracture end-point shifting coupled
with synthetic annealing  to achieve specified T-termination frequencies (see, e.g., Figure 8).  In3

this process, a fracture is either reoriented or moved from one location to another, while also
shifting the fracture end-points and counting the number of terminations produced.  If the per-
centage of fractures having two and one T-terminations improves as a result of the effort, then the
program begins to generate the next fracture; otherwise, the annealing process continues up to the
user-specified limits on attribute swapping.   To minimize the consequential but unintended
parent-daughter clustering caused by annealing, the user will usually specify that the annealing
process swap the orientation of each fracture by a maximum of two to eight times before 
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Figure 5.  Intersection density (average number of intersections per unit area) increases as the
        maximum allowable fracture end point shifting is increased.  The user generates
        networks with differing values of shifting and uses these resulting intersection
        densities or "connectivities" to select a value of shifting that produces the target
        intersection density or "connectivity" for the final network.

swapping the center-point location in an effort to find an acceptable number of terminations.  The
user may also require the generation of a specified percentage of fractures in a set before the
synthetic annealing process begins.  For Levels 3 and 4, a fracture may be moved only within its
cluster box under the same constraints as initially imposed, but end-points may be shifted beyond
the original cluster ends.

When it is more important to control the frequency of intersections than to control the frequency
of T-terminations, another technique can be used to explicitly match specified intersection fre-
quencies (see, e.g., Figure 9).  With this technique, the user specifies the frequency of fractures 
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Figure 6.  Fracture end point shifting significantly reduces the frequencies of fractures having
         zero or one intersection.

having zero to ten (or more) intersections (with T-terminations counted as intersections).  A pro-
cess of synthetic annealing then swaps each fracture's orientation and location, at user-specified
frequencies, until a fracture can be generated that has the optimal number of intersections needed
to improve the match between the generated distribution and the specified distribution of intersec-
tions.  The process varies the maximum and minimum acceptable fracture lengths in an effort to
match the generated length distribution with the specified length distribution, which is assumed to
be lognormal.  Most fractures are given two T-terminations, except those that are required to
have zero or one intersection.  Program efficiency is maintained by counting and optimally using
all the intersections on each half of each proposed fracture of maximum acceptable length. 
Parent-daughter clustering is controlled as specified above.  For Levels 3 and 4, a fracture may
be moved only within its cluster box according to the plotting strategy for lognormal fracture
lengths, but end-points may be chosen beyond the original cluster ends.
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Figure 7.  The frequencies of cross fractures having various numbers of intersections may not
        match the target frequencies when only fracture end-point shifting is used for con-
        nectivity control.  In this case, one of the other two connectivity control methods
        will provide better results (see Figure 9).  In the explanation box, “Otcp” refers to
        “outcrop.”

This latter process is particularly useful for modeling late-formed fractures or cross-fractures,
whereas the previously described technique works well for modeling early-formed or master frac-
tures.  Combined, the second and third techniques of T-termination and intersection frequency
control provide a powerful means of modeling the connectivity of complex fracture networks
(see, e.g., Figures 10 and 11).  Usually, when fractures are relatively long, the frequency of inter-
sections is governed primarily by the distribution of fracture lengths, so the generation process
should control T-termination frequencies (assuming the distribution of fracture lengths is known
from independent sources).  This is accomplished with the second technique.  However, when
fractures are short, as with cross-fractures, fractures must be placed at optimal locations to obtain
the correct intersection frequencies, given a specified nonsymmetric length distribution.  The third
technique does this.
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Figure 8.  T-termination frequencies of master regional fractures can be matched with target
         frequencies by using synthetic annealing conditioned to specified T-termination
         frequencies (Method 2).  From a study of a Mesaverde sandstone outcrop.

After applying intersection/termination control procedures, the user should verify that the output
diagnostic for "connectivity" is reasonably near the target value.

When the first two connectivity control methods are used with any fracture length distribution, the
process of fracture end-point shifting skews and flattens the initial length distribution.  Fracture
density (D ), however, does not change because the probability of any fracture becoming longerfi

as a result of end-point shifting equals the probability of becoming shorter by the same amount. 
When any of the connectivity control methods are used, fractures can extend beyond the ends of
clusters where they skew and flatten the cluster length distribution.
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Figure 9.  Fracture intersection frequencies (including T-terminations) of cross fractures and
         late-formed random fractures can be matched with simulated annealing conditioned
         to specified intersection frequencies (Method 3) in cases where end point shifting
         alone is insufficient (Method 1).  From a study of a Mesaverde sandstone outcrop.

All of the connectivity control methods generate bias in fracture locations.  Alone, fracture end-
point shifting generates a slight bias as fractures are moved, on average, slightly toward higher-
density areas where T-terminations are more readily found.  Synthetic annealing, on the other
hand, is capable of extreme levels of parent-daughter clustering, which can be limited by adjusting
the control parameters in the input data file.  Because of the various types of bias introduced by
these connectivity control methods, a user should apply these processes only after the best
possible model has been generated without connectivity controls.
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Figure 10. In our simulation of an Austin Chalk outcrop fracture pattern (see Figure 15), we
used nine sets of fractures with synthetic annealing conditioned to T-termination
frequencies (Method 2) to generate several early-formed sets and synthetic annealing
conditioned to intersection frequencies (Method 3) to generate the other sets.  End-
point shifting was also used to terminate a small percentage of early-formed fractures
against later-formed fractures.  The aggregate result on T-termination frequencies for
all nine sets is shown here.

Project Description:  FRACGEN

The models described above for the fracture networks are implemented by a FORTRAN program
called FRACGEN.  Increasing levels of complexity in the models are part of a design to facilitate
reservoir modeling.  Level 1 is easy to apply, but it departs significantly from the pattern of frac-
tures observed in most tight fractured reservoirs.  Higher-level models are progressively more
difficult to calibrate to a particular reservoir; however, they more accurately represent the inherent
complexity of real reservoirs.  The Level 1 model is particularly useful for quickly making initial 
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Figure 11.  The aggregate intersection frequencies for nine fracture sets, as explained in the
caption for Figure 10.  The slight mismatch results from the use of connectivity
control method 2, instead of method 3, for several of the sets.

estimates of the mean hydraulic aperture and the minimum area of reservoir that must be simu-
lated.  Level 2 can be used to model reservoirs in which fractures are nearly randomly located. 
When fractures are highly clustered, Levels 3 or 4 should be used; however, the choice of levels
often depends more on the availability of data than on the anisotropy and heterogeneity of the
fracture network.

FRACGEN generates fractures or clusters centered within a generation region, but it presents
only the network generated within an unbiased "flow region," which is the rectangular area in
which flow can be modeled.  To minimize boundary effects associated with synthetic annealing,
the program may reorient or relocate only fractures centered within a "buffer region," which is
intermediate between the flow region and the generation region.  Both the generation region and
the buffer region expand to accommodate the maximum fracture length of each set; so, to
minimize computing time, it is wise to employ a non-lognormal fracture length distribution that
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eliminates the creation of very long fractures and minimizes the processing of large numbers of
fractures in sets that include only a few long fractures.

FRACGEN reads an input file containing parameters and statistics for fracture attributes.  It
produces several optional outputs: a screen plot (for a VAX/VMS computer system), a plot
file for making hard copies, and an output file consisting of fracture end-points and apertures
(for input to the flow simulator).  It also sends copious diagnostics to the screen.  Diagnostics
include the number of fractures touching the flow region, the "connectivity" within the flow
region, the fracture density within the flow region, the numbers of fractures with zero, one, or
two T-terminations within the flow region, and the numbers or relative frequencies of fractures
showing zero to ten (or more) intersections within the flow region.  For each set that Level 4
generates, 31 diagnostics are presented.  The diagnostics allow the user to quantitatively assess
the synthetic network and the functioning of the program. The diagnostics also assist the user in
modeling fracture patterns observed on small outcrops or exposures where the exposure dimen-
sions are less than the maximum fracture lengths.

Project Description:  Input Data and Analysis

Input data requirements differ for the four levels of FRACGEN, and extra data are required for
some of the various options that exist at each level.  Most of the input describes fracture network
attributes of individual sets and may be classified as either fixed variables, statistics, or percents. 
These input parameters are presented as symbols in Tables 1 through 5.  A summary of data
collection and analysis is presented below.  Table 6 presents some generalized equations for
calculating a few useful common statistics.

Methods of data collection and analysis also must accommodate the sources of information. 
Sources can be classified as one-, two- or three-dimensional.  Core and borehole images give
essentially one-dimensional samples of the fracture network.  Most outcrops effectively provide
only two-dimensional samples.  Large or irregular bedding plane surfaces in outcrops should be
photographed or mapped at an appropriate resolution so that the analysis can proceed on the flat
image.

When a two-dimensional sample (e.g., an outcrop bedding plane) is available, the investigation
should focus on a sample area.  If the exposure is large, a representative sample area can be
marked in the middle of the exposure so that fractures centered within the sample area do not
extend beyond the boundaries of the exposure.  Statistics for trace length can be determined from
fractures centered within the sample area.  However, when the exposure is small relative to the
lengths of a significant percentage of the fractures, the investigator should collect the types of
information that will match the diagnostics provided by  FRACGEN for flow regions.  This will
permit an inverse modeling technique whereby the user selects (by trial and error) input parame-
ters until the output diagnostics match, on average, the data that was collected on the small
exposure.  Scan-line samples of fracture spacing for each set will prove valuable in analyzing
swarming or clustering.  Scan-line samples should be taken by drawing a line perpendicular to the
mean orientation of each set and recording the locations of fractures (in that set) along the scan
line.
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Table 6.  Equations for Calculating Common Statistics

Gaussian Distribution

Exponential Distribution

Lognormal Distribution

Uniform Distribution

Poisson Distribution

Fracture Center-Point
Density

Cluster Center-Point
Density

Degree of Clustering q = number of seqments in sample line
n = number of fractures of set i

s  = variance in number of fractures per segment2

 variance if all fractures fall into one segment
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More often, only borehole images or cores are available.  Either can be analyzed as scan-line data. 
Fracture length distributions and cluster length distributions remain undeterminable from these
sources.  Likewise, intersection and termination frequencies are undeterminable.  To determine
length and connectivity attributes, the investigator must turn to other sources, such as flow data,
correlations between fracture length and bed thickness, outcrop analogs, and seismic data.

The most common situation facing reservoir engineers and petroleum geologists is one of limited
information, primarily core or borehole imagery that show fracture locations and orientations in
horizontal or inclined wells.  Some information may be available from nearby analog outcrops and
regional geologic studies.  The approach to data collection might follow a path similar to the one
we used at the Multi-Well Experiment (MWX) site, as follows.  First, the investigator reviews the
regional geology for basic information that could help with the interpretation of observations in
the borehole and at nearby analog outcrops.  Fracture network attributes are predicted.  Next,
from borehole images or core, the investigator obtains data on fracture orientation, which are
used to define observed sets in the target reservoir.  The linear density of fractures (i.e., the
average number of fractures encountered per unit length of sample line that is oriented normal to
the fracture set = 7 ) is calculated for each set observed in the borehole.i

This linear density is then compared to the linear density of a similar set in an analog outcrop after
adjusting for differences in bed thickness and any other significant correlatable parameters.  The
goal is to estimate fracture length statistics for the reservoir.  An assumption is usually made that
any excess (unaccounted) linear density observed in the outcrop results from extra fracturing
caused by unloading and weathering.  If the excess linear density results from short fractures
forming between the longer fractures to relieve local stresses, the investigator may discard data on
all (or most) of the short fractures that are not needed to gain a match with the observed linear
density of the target reservoir.  From the retained subpopulation of longer fracture traces in the
outcrop, the investigator estimates the fracture length statistics.  Methods of correction have been
published by several authors for various types of bias and censoring.

Cluster lengths are much more difficult to estimate.  But some progress may be made by studying
large analog outcrops, detailed structure maps, high-resolution seismic imagery, and well inter-
ference data.  The investigator may need to extrapolate between small-scale fracture swarms,
which are measurable in outcrops, and large-scale fracture swarms, which are observable on
seismic imagery or interpreted from other sources.  Otherwise, the investigator may have to start
the modeling process assuming short clusters and gradually increase cluster length (holding cluster
density constant) until suitable flow simulations are achieved.  Whatever the case, the user of
FRACGEN should keep clusters as short as practical to minimize computer processing time and
memory.

Given the fracture sets, fracture orientation statistics, fracture length statistics, and an estimate of
cluster length statistics, the investigator can calculate the other required input parameters.  Taking
this approach, the Level 4 (lognormal fracture length) calculations are summarized in Figure 12. 
When analyzing borehole or core data, fracture sets might be defined solely on orientation. 
Modes in histograms of orientation measurements are interpreted as sets, and all the fractures are
assigned to the mode-based sets or to a randomly oriented set.  But when two-dimensional
exposures are analyzed, other fracture attributes are considered in defining sets.  Sometimes, more
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Figure 12.  Simple Approach to Input Data Analysis

from well logs:

fracture orientation (2 , s , b =f(s )i 2i i 2i

linear density of fractures (7 )i

from analogue outcrops:

fracture length (l , s )i li

cluster length (l , s )ci lci

calculate:

mean exponential spacing (m )i

m = m*  / (10 7 )i i i

fracture density (D )fi

D  = 7  / bfi i i

intra-cluster fracture density

d  = D  = <  n*  / (12 m  l  b  cos(N ))i zi i i i i i i

s  = 0.0di

cluster density (D )ci

D  = D  / [12 m  (l  - l  + 6  (l  - l )) d  l ]ci fi i ci i,2.0 i,1 i,2.0 i,-3.0 i i

where
6 , < , b  = correction factors (explained in text).i,1 i i

N   = angle between pole to fracture set and scanline sample.i

l   = fracture length at 2.0 standard deviations.i,2.0

than one set can be found to occupy a mode in the histogram of orientation.  For purposes of
modeling, the investigator should pay attention to termination frequencies, which help to discrimi-
nate sets and to ascertain their relative ages. Sets should be modeled in chronological order to
help generate appropriate hierarchial relations.
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The process of analyzing clusters from well bore or scan-line data is illustrated in Figure 13.  In
many reservoirs, fractures are obviously grouped into clusters or swarms.  Each fracture set
observed along a borehole has swarms at locations ostensibly independent of other fracture
swarms of the same set and other sets.  The number of fractures intersected per swarm may vary
from one fracture to tens of fractures.  A person might expect to subjectively group fractures into
clusters, but our studies of fractures intersecting the RET #1 well showed that fractures could be
grouped into large, small, or intermediate-sized clusters, or they could be grouped into variable-
sized clusters, without any certainty as to which groupings represent real fracture swarms. 
Determining what constitutes real clusters in a scan-line sample is further complicated in that
clusters theoretically could merge, overlap, or have smaller clusters within them (i.e., large-scale
spatial correlation).  Moreover, given a small sample space, even random placement of fractures
leads to a chance of apparent clustering.  And, if a Poisson process is used to generate synthetic
clusters, a subjective data analysis will not account for the overlapping clusters produced by the
model.

To aid in analyzing clustered events sampled along a scan line, a computer program was written
to generate a one-dimensional sample of the Level 3 model of a clustered fracture set.  Using this
program, several families of cumulative frequency curves were generated for selected values of mi

(exponential mean distance between fractures and their cluster axis) and n  (average numbers ofi

fractures intersected per cluster) (see, e.g., Figure 13, No.3).  The investigator compares these
theoretical curves with the normalized cumulative frequency distributions of fracture spacing
observed along the sample line (normalized to 10-unit spacing, average; see, e.g., Figure 13,
No. 2).  From this comparison, the investigator estimates the observed distribution's values for the
average number of fractures per cluster intersected by a sample line (n ) and the normalized*

i

exponential mean distance between fractures and their cluster axis (m ).  A computer program*
i

called SPA.BAS calculates the normalized cumulative frequency distribution for fracture spacing.

The analytic technique just presented is designed for the Level 3 model and is applicable to the
Level 4 model when the standard deviation of intracluster fracture density is zero (s  = 0).  Adi

good technique for estimating s  has not yet been developed.  A biased estimate of s  may bedi di

made by subjectively analyzing the individual clusters penetrated by the sample line.  The key to
this approach is to properly assign fractures to clusters so that an accurate count of the fractures
per cluster (n ) is obtained.  The n  and m  values estimated from the normalized cumulativei,k i i

* *

frequency distribution will help in making plausible assignments of fractures to clusters.  The
previously estimated m  value (divided by 107 ) should roughly equal the m  parameter calculated*

i i i

in this technique.  When this technique of analyzing clusters is applied, the calculations differ
slightly for Level 3 and Level 4 applications.

For Level 4, the user must apply the equation separately to the n  values for each clusteri,k

penetrated by the sample line:
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Figure 13. The six main steps to modeling clusters.  Fracture spacing observed in a bore hole or
scan line sample (1) is normalized and plotted in a cumulative frequency curve (2) for
comparison with theoretical curves (3).  The investigator can then estimate m  (the*

i

average distance between fractures and their cluster axis) and n  (the mean number*
i

of fractures per cluster intersected by the sample line).  These values, along with
estimates of other key parameters (4) taken from other sources, are used to calculate
the remaining input parameters.

where

D  = an estimate of the intracluster fracture center-point density of the kthzi,k

cluster in the ith set,

n  = the number of fractures in the kth cluster, andi,k

N  = angle between pole to fracture set and scanline sample.i
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(28)

(29)

(30)

(31)

The arithmetic average distance between fractures and their cluster axis for set i is

where

q = number of clusters sampled, and
n = total number of fractures in the sample.

Variance in fracture orientation for set i, assuming vertical fractures, may be accounted for with

which is implemented in a computer program called BCALC.BAS.

And, a correction for the risk of sampling near cluster ends, where fracture density is lower, may
be estimated with equations that account for the mean cluster length, l , relative to the maximumci

fracture length, l , as follows.i,max

The parameter <  includes a ( value that approximates the fraction (or weight) that upon multi-i

plication with the maximum intracluster fracture density of the kth cluster (l  d ) gives thei i,k

weighted average intracluster fracture density (ft/ft ) in the regions of reduced density at each end2

of a cluster.

To calculate (, a relation is needed to express intracluster fracture density, D (x), at any locationfci

x along a cluster axis.  The concept is that the fracture density contributed by fractures of length l
at any location x is a product of the number (or fraction) of fractures of length l times length l
divided by the area within the cluster where the center points may be plotted.  This quantity must
be multiplied by the fractional area where the fracture center points can be plotted to contribute to
the fracture density observed at location x.  We currently calculate ( with a computer program,
called CLUSDEN.BAS, that implements a summation process assuming either a discrete fracture
length distribution or a discretized fracture length distribution.  The basic calculations may be
generalized for any continuous fracture length distribution (p(l)) as follows (subscripts for set i
omitted).
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Dfc(x) ' m
x
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(32)

(33)

(34)

(35)

and

Intracluster fracture density near the middle of long clusters, where end effects do not exist, may
be calculated with

All other variables are defined elsewhere (see Tables 3 & 5).

The Level 4 intracluster fracture density parameters, d  and s , are estimated as the lognormali di

mean and standard deviation of the D  values.  Because the Level 4 technique of analyzingzi,k

clusters (Equation 27) does not explicitly account for the probability of cluster overlap and the
other problems of cluster recognition (described above), this technique usually overestimates the
d  and s  values.i di

For Level 3, an equation is applied to the lognormal mean of the n  values:i,k

where

n  =  lognormal mean of n  values . n ,i i,k i
*

m  = Eq. 28,i

b  =  Eq. 29, andi

<  = as defined above.i

In applying equations 27 through 35, we assume that all clusters are manifest by at least one
fracture per cluster intersecting the sample line.  Where there are only a few short unconnected
fractures making a cluster, there is the possibility of under-sampling caused by a sample line
passing through the cluster without touching any fractures.  We have not developed a solution for
this problem.



Df ' l D.

Df ' ' Dfi,

Dfi ' li Di ;

Dfi ' 12 mi (lci & li) Dzi li Dci ;
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When comparing fracture density for different data sets or for the same data set modeled by
different levels of the computer program, the investigator should compare the two-dimensional
fracture density, D .  Two-dimensional fracture density refers to the total length of fracture tracesf

(lines) in a representative area and has units of ft/ft .  Such density has the following relationships.2

For Level 1,

For Levels 2, 3 and 4,

where for Level 2,

for Level 3 and 4 nonskewed fracture length distributions,

and for Level 3 and 4 skewed fracture length distributions

where

For nonskewed length distributions (continuous uniform, discrete uniform, and continuous
nonuniform),

And, for skewed length distributions (including intersection frequency controlled),



li ' exp (Uli % 0.5 s 2
uli)

lci ' exp (Ulci % 0.5 s 2
ulci) .
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and

All other parameters are previously defined (see also Table 5).

Results: Example Output, Verification/Validation, Speed

We have conducted studies of:  (1) a fractured Devonian shale reservoir penetrated by the U.S.
DOE's RET #1 well in Wayne County, West Virginia; (2) the fractured paludal sandstones
penetrated by the U.S. DOE's Multi-Well Experiment (MWX) wells near Rifle, Colorado; (3) a
Mesaverde sandstone outcrop fracture pattern mapped near Rifle, Colorado (from Lorenz and
Finley, 1991); and (4) an Austin Chalk outcrop fracture pattern mapped in a quarry near San
Antonio, Texas (from Corbett and others, 1991).  These case studies have provided “lessons-
learned” for incremental development of the software and have demonstrated that the software is
capable of modelling complex fracture patterns.

We have conducted several input data analyses to verify that the chosen distributions for input
variables sufficiently match reality.  Goodness-of-fit tests were applied to data collected from a
Mesaverde sandstone outcrop near Rifle, Colorado and from MWX site cores.  The sandstone
outcrop contained an early-formed regional fracture set, a later-formed cross-fracture set, and a
few random fractures.  We found that for all three sets, fracture placement could be adequately
modeled with random placement of fracture center-points.  Fracture orientation could be ade-
quately represented with Gaussian distributions (two orthogonal sets with large standard
deviations were used to produce the random set).  Fracture trace lengths could be adequately
modeled with lognormal distributions.  And, fracture intersection and termination frequencies
could be closely matched through synthetic annealing processes.

Hydraulic fracture apertures could not be tested for lognormality, but the reported gross apertures
in MWX core (Finley and Lorenz, 1988) are not obviously non-lognormal.  The most significant
departure from the theoretical distributions used in FRACGEN was found for fracture height, as
reported for the MWX core (Finley and Lorenz, 1988).  Instead of a fixed fracture height equal to
the thickness of the bed, fracture height may be independent of bed thickness when the thickness
is more than a particular (but undetermined) value or when the reservoir contains small lithologic
discontinuities (e.g., shale partings) (see Lorenz et al., 1989).  Parameters for clustering could not
be tested at this site because the fractures have nearly random center-point locations.  However,
for the RET #1 well data, the one-parameter exponential distribution (of distance between
fractures and their cluster axis) did fit a fracture set that was tested.
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Figure 14a is a sample synthetic fracture network generated from the Mesaverde sandstone frac-
ture map.  Figure 14b shows a portion of the fracture map at the same scale for comparison. 
Similarly, Figure 15a is a sample synthetic fracture network generated from the Austin Chalk
fracture map, and Figure 15b shows, for comparison, a straight-line tracing of a portion of the
fracture map.  Comparisons of T-termination frequencies and intersection frequencies are shown
in Figures 8 and 9 for a Mesaverde sandstone and in Figures 10 and 11 for the Austin Chalk.  To
illustrate FRACGEN's ability to model clustering, a realization of one set of fractures observed in
the RET #1 borehole video is presented as Figure 16.

Computer speed varies primarily as a function of the termination/intersection control processes
and as a function of maximum fracture lengths and maximum cluster lengths.  On a Pentium 200-
equivalent computer, FRACGEN requires from several seconds to a few minutes to generate
typical networks without termination/intersection control.  With fracture end-point shifting in
effect, the run time increases as a function of the number of fractures generated and the fracture
length distributions.  With synthetic annealing also in effect, the run time further increases as a
function of the number of swaps.  The realization in Figure 20 required 8 minutes, and the
realization in Figure 14 required 21 minutes.

Reservoir Flow Simulation

Objectives:  Drainage of Complex Fracture Network and Matrix

The mathematical model described below was developed to study reservoir performance as a
function of fracture pattern, fracture network connectivity, and variations in matrix block size
populations and locations.  To this end, the model characterizes the reservoir in terms of the fluid
carrying capacity of fractures, fluid flow paths, and the effective volumes drained by fracture
segments.

Approach:  Mathematical/Numerical Model

The material balance and flow equations that constitute the mathematical model for the gas
reservoir simulator are developed in the following way.  The reservoir is represented by a col-
lection of flow paths that intersect at points referred to as nodes.  The flow paths consist of both
the fracture network and the horizontal wells.  Each flow path is subdivided into segments by the
nodes.  Each segment is recharged by gas from the surrounding matrix rock.  In the model, the
recharge flow is lumped at the midpoint of each segment (Figure 17).  The recharge flow to each
segment is modeled by two one-dimensional systems that represent the dynamics of flow in the
matrix rock on either side of the path.  Each of these systems is assigned an effective volume
based on the network geometry.  The nodes formed by the intersection of two fractures are called
normal nodes, while nodes formed by the intersection of a well and the fracture network are called
well nodes.
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Figure 14a. This realization was generated using data from the Mesaverde sandstone outcrop
fracture map (see Figure 14b).  T-termination frequencies were explicitly controlled
on the master fracture set.  Intersection frequencies were explicitly controlled on the
cross fractures and random fractures.

Normal nodes are simply summing points.  The model equation for a normal node is obtained by
requiring that the molar inflows to that node sum to zero.  The following notation is used for the
model description (see Figure 18).  The normal node for which a material balance is being written
is labelled P and the four segments (and their corresponding mid-points) that meet at that node are
labelled e, w, n, and s with the nodes at the other ends of the segments labelled E, W, N, and S
respectively.  The volumetric flow rate in the fractures is modeled using the expression
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Figure 14b. This is a portion of the Mesaverde sandstone outcrop fracture map presented by
Lorenz and Finley, 1991 (reprinted by permission of the American Association of
Petroleum Geologists and Datapages, Inc.).  It is at the same scale as the realization
in Figure 14a.

where h is the formation thickness, w is the fracture aperture, µ is the gas viscosity, and  is the

gas pressure gradient.  The molar gas density is given by the real gas equation of state
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Figure 15a. This realization was generated using data from the Austin Chalk outcrop fracture
map (see Figure 15b).  Termination frequencies were explicitly controlled for early
formed sets in this realization, and intersection frequencies were explicitly controlled
for later-formed sets.  End point shifting was used to connect a few early formed
fractures to later-formed fractures.

where R is the gas constant, T is the temperature, and Z is the Z factor which is a function of T
and p.  The reservoir is assumed to be isothermal so the temperature dependence of Z is sup-
pressed in the derivation.  Writing the material balance at P yields
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Figure 15b. Straight line tracing of the rather sinuous fractures mapped by Corbett et al., 1991,
(Dallas Geological Society Field Trip Guidebook #4, p. 27) in a quarry of the Austin
Chalk.  According to Corbett et al., "[a] large portion of the fractures are altered or
filled and isolated from other fractures."  This pattern represents the typical pattern
that occurs between the significant fault and fracture zones, which make productive
wells.  Flow between the significant fault/fracture zones is minimal and slow.  Flow
simulations on synthetic realizations of this pattern might be used to help determine
permeability tensors of "matrix" between the main fracture zones for a larger
simulation of the reservoir.
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Figure 16. This figure illustrates clustering produced by FRACGEN.  It shows one set (or 
subset) of fractures as observed by Overbey et al. (1987) in the well bore video of
the RET #1 well that was drilled into the Devonian shale in Wayne County, West
Virginia.  These fractures are highly clustered.  The reservoir contains several other
sets that are not shown on this illustration.

By defining the real-gas pseudopotential (potential for short) as
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Figure 17. Each fracture segment is recharged at its midpoint by the matrix on both sides of the 
fracture.  T intersections are treated as non-terminal intersections with the terminating
fracture extending a very short distance into the matrix block on the other side.  Gas
pressure in the fracture segment establishes the unsteady boundary condition for
modeling flow into the fracture segment.  Therefore, recharge of the fracture segment
is determined, in part, by the pressure history in the segment.

Equation 49 can be rewritten as

Since fluid enters the flow paths only at the recharge points, the molar flow is a constant between
a recharge point and a node, thus Equation 51 can be expressed without further approximation by
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Figure 18. Fracture segment recharge points are labeled n, s, e, and w.  Recharge at each of
these fracture segment midpoints contributes to the mass balance at each fracture
intersection.

where )s  is the length of segment i and i = w, e, s, or n.  The fracture transmissibility is definedi

by

Thus,
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Equation 54 depends on the potential at the segment mid-points as well as node P, so the equation
set has to be augmented by equations obtained by performing material balances on the fracture
segments.  Consider the segment e, for example.  The material balance is

where  and  are the molar recharge rates from the right and left sides of the

fracture, respectively.  Writing Equation 55 in terms of M yields

If the integral in Equation 56 is approximated by  and if the time derivative is approxi-

mated by a backward difference, we obtain

where  is the time interval between  and .  Equations 54 and 57 are solved for  at

the nodes and recharge points.

Equation 57 is nonlinear since , , and  are nonlinear functions of ; therefore,

the set of Equations 54 and 57 is solved by the Newton Raphson technique.  Thus, we define

residuals by

and
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where if i = w then j = W, i = e, j = E, etc.

By applying the Newton-Raphson method to Equations 58 and 59, we obtain

and

with

where  is the potential at any node or recharge point.  Equations 60 and 61 are a set of linear

equations, which can be solved in the following manner.  Let
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Then Equation 61 becomes

which can be solved to obtain

where

Equations 65 and 66 were developed assuming that  is a variable to be solved for.  If node j

is a well node for a pressure controlled well, then  is a given value (boundary condition)

rather than a variable; therefore, .  In these cases, Equation 65 becomes

and the expression for  remains the same.  If node P is the first or last node on a fracture, then

node j does not exist.  In that case, the term  in Equation 56 is not present, and

Equation 64 becomes

Solution of Equation 68 gives the same result as Equation 67 but with  given by

When the expressions for  are combined with Equation 60, the following set of linear

equations for the corrections at the nodes is obtained
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(71)

(72)

(73)

(74)

(75)

where

and

The material balance at the well nodes is similar to the balance at a normal node except that the
pressure (hence potential) is uniform for all nodes and recharge points that are a part of the well. 
For a pressure controlled well, the pressure is specified by the user and the total inflow to the well
represents the production rate for the well.  In the case of a rate controlled well, the total inflow
to the well is required to sum to a user specified value (boundary condition) and the well potential
is an unknown to be solved for.  The well material balance is

where  is summed over the well segments, and   is summed over the intersecting fractures.  In

Equation 73, the integral represents the rate of gas accumulation in the horizontal well bore,  is

the molar density at standard conditions, and  is the volumetric flow rate measured at

standard conditions.  Expressing Equation 73 in terms of the potential and discretizing it yields

where  is the well potential,  and  are the potentials at the recharge points of the right

and left segments of intersecting fractures, respectively.   is the volume of the horizontal

wellbore and  is given by
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(76)

(77)

(78)

(79)

Equation 74 replaces Equation 54 for well nodes of rate controlled wells.  The residual
corresponding to Equation 74 is

By applying the Newton-Raphson technique to Equation 66, we obtain

If we define

then Equation 77 can be written as 

When Equations 65 and 67 are used for  and , then Equation 79 assumes a form

similar to Equation 70 except that the sum is over all nodes that terminate fracture segments that
intersect the wellbore.  Thus, we can write
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(80)

(81)

(82)

(83)

where

and  is given by Equation 72.

After Equations 70 and 80 have been solved for , then Equations 65 and 67 are used to

calculate .  After the corrections are applied to , the residuals , , and

 are tested to determine whether they meet the convergence criteria.  If the criteria are not

met, Equations 70 and 80 are solved for a new set of corrections, and the process is repeated until
the equations have converged.

Equations 70 and 80 constitute a large sparse set of linear equations and any method suitable for
this type of system can be used for their solution.  The point over-relaxation method was chosen
for this work.  If we write the generic form for Equations 70 and 80 as

where the sum is over all nodes coupled to node c, which is either a normal node or a rate
controlled well bore and  is the appropriate sum of residuals, then the solution algorithm is

In Equation 83 the superscript denotes the iteration level of the linear solution technique, and T is

the over-relaxation parameter.  The converged solution of Equation 83 corresponds to ,

which is the  correction to  in the Newton-Raphson technique.  The over-relaxation

parameter is chosen to minimize the average number of iterations required to solve Equation 82
subject to .

Equations 58 and 59 are true regardless of the form of  and .  In this work they are

calculated using a numerical one-dimensional unsteady model; however, any model that computes
the recharge rate and its derivative as a function of the pressure history in the adjoining flow path
could have been used.  The following explains how  and  are computed in this

work.
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(84)

(85)

(86)

(87)

(88)

The numerical model for recharge requires dividing up the effective volume drained by a flow
path into a set of discrete blocks (see Figure 19).  If  is the effective volume of a matrix block

then the simplest model is

where  is the length of the flow path segment adjoining the volume, and  is the effective

length of the volume.  Here the effective volume is chosen to have a rectangular plan, but other
plans such as trapezoidal or triangular plans could have been chosen.  The volume is divided into

 subvolumes with unequal .  The volume adjacent to the fracture has the smallest , the

next volume has a  of  times the first, the next has a of times of the second and
so forth, so that

Performing the sum and solving for yields

where  is chosen so that

when  is computed from

In Equation 88  means the largest value obtained for  for any effective volume in the

reservoir.  This procedure results in all subvolumes adjacent to flow paths having approximately
the same size  regardless of the size of  of the effective volume.  Thus, those effective

volumes with the largest  are divided into  subvolumes while those with smaller  are

divided into fewer subvolumes.  The combination of , , and  determines the spatial

resolution of a simulation.
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Figure 19. Matrix blocks of varying shapes and sizes are divided into subregions that are each
approximated by a rectangular block of equivalent volume and mean flow path length. 
Flow within these subregions is represented by a one-dimensional unsteady-state
model.

The equations solved in the matrix blocks are standard equations for quasi-one-dimensional flow
as modified for porous media.  To simplify notation, no subscripts are used to designate a par-
ticular effective matrix volume.  Thus, for any effective volume we have
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(89)

(90)

(91)

(92)

(93)

where A  is the local cross-sectional area of the system, N is the porosity of the matrix rock, andc

 is the superficial or darcy velocity.  Substituting for D and using the fact that  is a constant

gives

When  is given by Darcy's Law and use is made of the definition of M we obtain

where k  is the matrix permeability.  Equation 91 is the partial differential equation that modelsm

the equivalent one-dimensional systems.

The system is solved numerically by discretizing the effective matrix volume into n  blocksb

centered at x  with length  where i=1,...n .  The boundaries of block i are at x  and x . i b i-1/2 i+1/2

The discrete equations are obtained by integrating Equation 91 with respect to x from x  toi-1/2

x .  Because the boundaries of the cells are fixed in time, this yieldsi+1/2

The integral in Equation 92 is approximated by  where V  is the pore volume of block i,i

while the flow terms are approximated by  where the

plus sign holds at x  and the minus sign at x .  The expressions for the flow terms hold at alli+1/2 i-1/2

cell boundaries except x  and .  The flow at x  is given by  where1/2 1/2

M  is the boundary condition for this matrix block and is equal to the local value of M .  The flowo
f

at  is zero.  If we define
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(94)

(95)

(96)

(97)

(98)

Then Equation 92 can be written as

The finite difference equations for the matrix blocks are completed by using a backward difference
for the time derivative,

Unless the gas pressure is extremely high the change in pore volume with pressure is small

compared to the gas compressibility; therefore, the V  are treated as constants.  The set ofi

equations for  are non-linear since  is a non-linear function of M; hence, the equations

must be solved by iteration.  The residuals for the equations are defined by

where the superscript (k) denotes the kth iteration for the n+1 time level.  The solution has been
obtained when

Newton's method is used satisfy Equation 98; thus,
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(99)

(100)

(101)

(102)
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(104)

where

and

Once the  have been obtained, the term that represents the recharge rate is given by

where  denotes the flow path potential at the recharge point.  The sensitivity coefficient used in

the solution of the flow path material balances is given by

An equation for  is derived by differentiating Equation 97 at convergence with respect to

.  This yields
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This equation has the same set of coefficients as Equation 96, but a different right-hand side.  The
solution of the set of Equations 104 produces a value for , which is used in Equation

103 to compute .

Project Description:  NFFLOW

A FORTRAN program called NFFLOW implements the reservoir model presented above.  The
program reads two input files.  One file contains the fracture network plus a description of the
well.  The other input file contains a physical description of the reservoir and recurrent data on
output control and either well production or bottom-hole pressures.  Output goes to four files. 
One output file contains a summary report of production and bottom-hole pressures.  The second
file, a plotable ASCII file, contains the gas pressures for each fracture segment.  A third output
file lists the input reservoir data, a node summary with flow path indices, the matrix volumes for
each segment, and the simulation results.  An optional output logs the computational processes
at one of three levels of detail ((a) a nonlinear iteration report, (b) adds a linear solver report,
(c) adds a report on the recharge models).

The standard well is a horizontal well.  Horizontal wells are treated as infinitely conductive
fractures (i.e., lines of constant pressure), so the productivity is strongly influenced by the number
and quality of the fractures that it intersects.  Vertical wells are modeled as very short horizontal
well segments positioned to intersect fractures.  Using a file editor, the user manually adds a well
description plus any induced hydrofractures to the end of the file that contains the fracture
network.

Fracture segment pressures are plotted or viewed with a program called PLOTIT.  Colors are
assigned nonlinearly to represent gas pressures within the fracture segments.

Results:  Example Output, Validation, and Speed

We have used the flow simulator to simulate a well test (Branagan et al., 1988) that was per-
formed on the MWX #1 well, Rulison Field, Colorado.  The goal was to validate our simulator
and fracture network models.  Simulation would accomplish this if it could match bottom-hole
pressures in the test well and in two nearby observation wells while simulating production over
the duration of the variable rate drawdown and buildup phases of the well test.  All previously
published reservoir parameters (Branagan et al., 1987, 1988) were used; only fracture apertures
were varied to produce a match.  In all simulations, a short well lateral was used to connect the
vertical well to the fracture nearest the center of the flow region.  Aperture of the fracture nearest
the flow region was varied to improve the match.

On average, the  simulation results closely matched the test results for the buildup portion of the
test but not the drawdown portion.  Only a rough match could be obtained for the drawdown
portion.  Part of this problem seems to have resulted from our adherence to published values,
which could slightly misrepresent the reservoir's true parameters.  However, the other part may
relate to NFFLOW: it needs to simulate water (or drilling fluid) obstruction of fractures near the
well bore.
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Despite its current inability to model two-phase flow, the flow simulator proved useful in the
MWX study.  Plots of fracture pressure proved helpful in assessing permeability anisotropy of the
fracture network, pressure drop in the vicinity of the observation wells, and the connectivity of the
fracture network proximal to the well.  Plots of fracture pressure combined with pressure versus
time plots enabled several specific conclusions regarding the existence of cross fractures, the
lengths of fractures relative to those in the outcrop, the volume of reservoir tested, the minimum
density of fractures, and the relative apertures of the fracture sets.

Results from one of the MWX simulations are presented as Figures 20 through 24.  Of course,
statistically equivalent networks give different flow responses, as shown in Figure 25; so several
simulations are needed to determine the average result of any particular network model.

Flow simulator run times, for a case study with a network consisting of 2300 fractures and 51
time steps, were less than one hour when our VAX 8650 was unburdened.  Parts of the code have
been run on a Pentium 200 MHz computer to test performance.  Processing took only 70 percent
as much time on the Pentium, giving estimated run times of about 35 minutes on this computer.

Benefits

This project demonstrates that strata-bound tight reservoirs containing irregular, semidiscontinu-
ous fracture networks can be simulated without gross simplification (e.g., regular grids of frac-
tures), without statistical abstractions (i.e., equivalent permeability tensor maps), and without
herculean efforts.  This project represents a significant advancement in the art of gas reservoir
simulation by being among the first to readily simulate gas reservoir flow and drainage with a
discrete, irregular, stochastic fracture network using a large number of fractures.

Discrete stochastic fracture network models are superior to the currently popular anisotropic
porous media models for modeling flow in small areas near the well bore.  Furthermore, data
analysis and modeling with fracture network statistics can require less effort than the abstraction
process that is required to derive equivalent gridblock permeabilities for the anisotropic porous
media models.

This flow simulator demonstrates that near-well-bore fracture network geometry can be
accounted for without resort to "well functions," which translate grid-block variables into
formation face variables for the well-bore.

This project improves our ability to analyze reservoirs.  In other words, it presents a way of
explaining reservoir behavior that could not be conclusively explained using conventional dual-
porosity, dual-permeability reservoir simulators.  For example, we determined that the lack of
pressure response in the observation wells at the MWX site was merely the result of flow-testing
the well over time periods that were too short.  Previous investigators had contrived numerous
plausible explanations (e.g., sealing faults, water blockage) but could say nothing with certainty.
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Figure 20.  This multicolored fracture pattern is a realization of our conceptual model of the
fracture network in the paludal zone reservoirs of the Mesaverde Group, MWX
test site, near Rifle, Colorado.  The WNW fractures are the regional master
fracture set observed in core and in nearby outcrops.  The NE cross-fracture set
represents our interpretation of three NE-oriented fractures in the SHCT-1 core
(inclined) through the target reservoirs.  Four NNW fractures seen in the NE
corner of the plot are part of a low density set of shear fractures.  A few random
fractures were added.  Total fracture density is 0.336 ft/ft , which is produced by2

a total of 1161 fractures.  There are 1846 intersections.  Equivalent hydraulic
apertures and flow region dimensions are shown in units of feet.

Unlike most previous irregular fracture-network flow (aquifer) simulators, this one models
dynamic drainage and recharge of the matrix rock, simulates production either through multi-
lateral horizontal wells or fractured vertical wells, operates in either rate-controlled or pressure-
controlled modes, and plots the gas pressures in all the fracture segments of the network.
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Figure 21. The pattern of gas pressure within fractures is illustrated with color in this plot. 
Overall, the color pattern represents the potentiometric surface, with its "cone of
depression" around the well.  This is day 3.0 during the simulation of the well test
(see Figure 24) at the beginning of the main drawdown event.  One master regional
fracture intersects the well, and the aperture of this fracture was reduced (via trial
and error testing) to 30.0 x 10  ft to improve the match between the simulation-6

results and the test results.  Drawdown occurs preferentially to the WNW of the
well where local connectivity is better.

Suggested Future Activities

Future research and development of the fracture network generator should focus on using the full
range of data available in the oil and gas industry.  This means that the program must:  (1) accept
mapped fracture network attributes (e.g., fracture density maps), (2) condition the fracture net-
work realizations to known fracture locations, (3) model compressional fold-related patterns and
fault-related patterns around given fold axes and fault traces, (4) generate subseismic-scale folds
and faults between known ones, and (5) correlate attributes (e.g., length-to-aperture correlation).
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Figure 22.  By day 6.5 during the simulation, the potentiometric depression has enlarged and
           spread to the ESE.  This is at the time of maximum drawdown around the well.  
           As shown by the comparison of this illustration with Figure 21, uneven drainage 
           of apparently homogeneously fractured reservoirs can occur.  Drainage from the
           NW stops because of low connectivity in that area.  Far-field connectivity is better
           towards the east.  Local connectivity and fracture density variations create subtle
           clustering, which affects reservoir drainage.

Additional work on the flow simulator should increase the number of fractures handled by it,
model gas desorption/adsorption phenomena, model fracture apertures as a function of ambient
fluid and rock pressures, and possibly accommodate two-phase flow.
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EXPLANATIONS OF VARIABLES FOR FRACTURE NETWORK GENERATOR

(variables not listed are explained in Table 5 or where used)

a  = lower limit of range.
b  = upper limit of range.
b  = correction for variance in fracture orientation.i

D  = two-dimensional fracture density; average length of fracture trace per unit areaf

(ft/ft ).2

D  = maximum two-dimensional intracluster fracture density; average length of fracturefci

trace per unit area within a cluster where end effects do not exist.  The
representative sample area extends across the width of a cluster (ft/ft ).2

D (x) = two-dimensional intracluster fracture density at location x (coordinate parallel tofci

the axis of a cluster).
l  = exp(U - 3s )i,-3.0 u

l  = exp(U + 2s )i,2.0 u

l  = exp(U + 3s )i,3.0 u

L = width of cluster box in set i.wi 

n  = number of events or objects, except where otherwise specified.
N = number of fractures in kth cluster of ith set.i,k 

p(x) = probability (density) function.
P(x) = probability distribution function.
q  = number of equal-size quadrats or intervals of sample space.
R  = random variate (0 < R # 1.0).
s  = a general symbol for the standard deviation for any distribution that is indicated by

a subscript.
U  = arithmetic average of the natural logarithms of observations.
z  = standard normal deviate.
(  = weight applied to calculate a weighted average.
.  = degree of clustering in percent for the range between perfectly random locations to

tight clustering in which all events occur in one interval of sample space. Accuracy
is dependent on number of intervals used.

2  = 2  + 3 smax i 2

2  = 2  - 3 smin i 2

6 = weight applied to calculate a weighted average.
7  = linear density of fractures (average number of fractures per unit length of a samplei

line normal to the mean orientation of the fractures) = 8  /cos(N ).i i

8  = fracture frequency (the average number of fractures per unit length of sample line).i

7 = linear density of clusters (average number of clusters per unit length of a sampleci 

line normal to the mean orientation of the clusters) = 8  /cos(N ).ci i

8 = cluster frequency (the average number of clusters per unit length of sample line).ci 

N  = angle between the sample line and the normal pole of the fracture set (degrees).i

P  = a general symbol for the mean value of x.
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EXPLANATIONS OF VARIABLES FOR FLOW SIMULATOR

 = Cross sectional area used in one-dimensional model.

c  = Gas compressibility.g

h = Formation thickness.
 = Matrix permeability.

n  = Number of blocks in a specific one-dimensional model.b

n  = Maximum number of blocks in one-dimensional models.max

p = Gas pressure.
 = Recharge rates as defined in Equation 9.

Q  = Scaled surface production rate.comp

 = Volumetric flow rate.

R = Universal gas constant.
r = Ratio of transmissibilities defined by Equations 20 and 23.
s = Distance along fracture.
T = Absolute temperature.
t = Time.

 = Sensitivity coefficient for recharge.

 = Fracture transmissibility as defined in Equation 7.
 = Darcy or superficial velocity.

 = Effective volume of a matrix block.

 = Volume of fracture segment.

V  = Volume of horizontal wellbore segment.H

V  = Volume of block i in one-dimensional model.i

w = Width of fracture aperture.
x = Distance variable in one-dimensional models.

 = Scale length for one-dimensional models.

Z = Gas Z-factor.
$ = Geometric ratio for non-uniform grid in one-dimensional models.
µ = Gas viscosity.
D = Gas molar density.
M = Real gas pseudopotential.
N = Matrix porosity.
T = Over-relaxation parameter.

Superscripts

k = Newton-Raphson iteration level.
l = Iteration level in point over-relaxation method.
n = Time level.
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Subscripts

c = Generic central node (either normal or well node).
i = Recharge point for flow path.  Block index in one-dimensional model.
j = Node index.
j  = Intersecting fracture index.f

k  = Well segment index.s

l = Left side of flow path.
P = Normal node index.
r = Right side of flow path.
sc = Standard conditions.
w = Well.
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